MAC 2311 Chapter 2 Review Materials (Part III) Topics Include Related Rates, Differentials, and Linear Approximations

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

1) Suppose that the radius r and the circumference $C = 2\pi r$ of a circle are differentiable functions of t. 1) ______ Write an equation that relates dC/dt to dr/dt.

A)
$$\frac{dC}{dt} = 2\pi r \frac{dr}{dt}$$
 B) $\frac{dC}{dt} = \frac{dr}{dt}$ C) $\frac{dC}{dt} = 2\pi \frac{dr}{dt}$ D) $\frac{dr}{dt} = 2\pi \frac{dC}{dt}$

2) The area of the base B and the height h of a pyramid are related to the pyramid's volume V by the 2) _____ formula $V = \frac{1}{3}$ Bh. How is dV/dt related to dh/dt if B is constant?

3)

4) _____

5) _____

6)

A)
$$\frac{dV}{dt} = B\frac{dh}{dt}$$
 B) $\frac{dV}{dt} = \frac{dh}{dt}$ C) $\frac{dV}{dt} = \frac{1}{3}\frac{dh}{dt}$ D) $\frac{dV}{dt} = \frac{B}{3}\frac{dh}{dt}$

3) If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, $c^2 = a^2 + b^2$. How is dc/dt related to da/dt and db/dt?

A)
$$\frac{dc}{dt} = a^2 \frac{da}{dt} + b^2 \frac{db}{dt}$$

B) $\frac{dc}{dt} = a \frac{da}{dt} + b \frac{db}{dt}$
C) $\frac{dc}{dt} = 2a \frac{da}{dt} + 2b \frac{db}{dt}$
D) $\frac{dc}{dt} = \frac{1}{c} \left[a \frac{da}{dt} + b \frac{db}{dt} \right]$

4) The range R of a projectile is related to the initial velocity v and projection angle θ by the equation $v^2 \sin 2\theta$

 $R = \frac{v^{2} \sin 2\theta}{g}, \text{ where g is a constant. How is dR/dt related to d\theta/dt if v is constant?}$ $A) \frac{dR}{dt} = \frac{2v^{2} \cos 2\theta}{g} \frac{d\theta}{dt}$ $B) \frac{dR}{dt} = -\frac{v^{2} \cos 2\theta}{g} \frac{d\theta}{dt}$ $C) \frac{dR}{dt} = \frac{v^{2} \cos 2\theta}{g} \frac{d\theta}{dt}$ $D) \frac{dR}{dt} = \frac{2v^{2} \sin 2\theta}{g} \frac{d\theta}{dt}$

5) The range R of a projectile is related to the initial velocity v and projection angle θ by the equation $v^2 \sin 2\theta$ where σ is a constant. How is dP/dt related to dv/dt and $d\theta/dt$ if poither v per θ is

 $R = \frac{v^2 \sin 2\theta}{g}$, where g is a constant. How is dR/dt related to dv/dt and d θ /dt if neither v nor θ is constant?

A)
$$\frac{dR}{dt} = \frac{1}{g} \left(4v \cos 2\theta \frac{d\theta}{dt} \frac{dv}{dt} \right)$$

C) $\frac{dR}{dt} = \frac{1}{g} \left(v \cos 2\theta \frac{d\theta}{dt} + \sin 2\theta \frac{d\theta}{dt} \right)$
B) $\frac{dR}{dt} = \frac{v}{g} \left(v \cos 2\theta \frac{d\theta}{dt} + 2 \sin 2\theta \frac{dv}{dt} \right)$
D) $\frac{dR}{dt} = \frac{2v}{g} \left(v \cos 2\theta \frac{d\theta}{dt} + \sin 2\theta \frac{dv}{dt} \right)$

Provide an appropriate response.

7) If $xy^2 = 4$ and $dx/dt = -5$, then what is dy/dt when $x = 4$ and $y = 1$?	7)		
A) $\frac{5}{8}$ B) $\frac{8}{5}$ C) $-\frac{5}{8}$ D) $-\frac{8}{5}$,		
8) If $y\sqrt{x + 1} = 12$ and $dx/dt = 8$, then what is dy/dt when $x = 15$ and $y = 3$?	8)		
A) $\frac{4}{3}$ B) $-\frac{3}{4}$ C) $\frac{3}{4}$ D) $-\frac{4}{3}$			
Solve the problem.			
9) A company knows that the unit cost C and the unit revenue R from the production and sale of x units are related by $C = \frac{R^2}{158000} + 3405$. Find the rate of change of unit revenue when the unit cost	9)		
is changing by \$12/unit and the unit revenue is \$2000.			
A) \$474.00/unit B) \$120.00/unit C) \$340.50/unit D) \$407.25/unit			
10) A wheel with radius 3 m rolls at 19 rad/s. How fast is a point on the rim of the wheel rising when the point is $\pi/3$ radians above the horizontal (and rising)? (Round your answer to one decimal place.)	10)		
A) 57.0 m/s B) 28.5 m/s C) 14.3 m/s D) 114.0 m/s			
11) A piece of land is shaped like a right triangle. Two people start at the right angle of the triangle at the same time, and walk at the same speed along different legs of the triangle. If the area formed by the positions of the two people and their starting point (the right angle) is changing at 3 m ² /s, then how fast are the people moving when they are 3 m from the right angle? (Round your answer to	11)		
two decimal places.)B) 2.00 m/sC) 1.00 m/sD) 0.50 m/s			
Solve the problem. Round your answer, if appropriate.			
12) Water is discharged from a pipeline at a velocity v (in ft/sec) given by $v = 1054p(1/2)$, where p is the pressure (in psi). If the water pressure is changing at a rate of 0.340 psi/sec, find the acceleration (dv/dt) of the water when $p = 57.0$ psi.			
A) 39.8 ft/sec ² B) 1350 ft/sec ² C) 23.7 ft/sec ² D) 69.8 ft/sec ²			
Solve the problem.			
13) A container, in the shape of an inverted right circular cone, has a radius of 4 inches at the top and a height of 5 inches. At the instant when the water in the container is 2 inches deep, the surface level is falling at the rate of -1.3 in./s. Find the rate at which water is being drained.	13)		
A) $-10.45 \text{ in.}^{3}/\text{s}$ B) $-10.89 \text{ in.}^{3}/\text{s}$ C) $-14.64 \text{ in.}^{3}/\text{s}$ D) $-9.98 \text{ in.}^{3}/\text{s}$			
Solve the problem. Round your answer, if appropriate. 14) One airplane is approaching an airport from the north at 150 km/hr. A second airplane approaches from the east at 297 km/hr. Find the rate at which the distance between the planes changes when the southbound plane is 27 km away from the airport and the westbound plane is 19 km from the	14)		
airport. A) -588 km/hr B) -147 km/hr C) -441 km/hr D) -294 km/hr			

15) A man 6 ft tall walks at a rate of 3 ft/sec away from a lamppost that is 13 ft high. At what rate is the 15) _____ length of his shadow changing when he is 50 ft away from the lamppost? (Do not round your answer) C) $\frac{18}{19}$ ft/sec A) $\frac{9}{19}$ ft/sec B) $\frac{18}{7}$ ft/sec D) 25 ft/sec 16) Electrical systems are governed by Ohm's law, which states that V = IR, where V = voltage, I = voltage16) _____ current, and R = resistance. If the current in an electrical system is decreasing at a rate of 4 A/s while the voltage remains constant at 14 V, at what rate is the resistance increasing (in Ω /sec) when the current is 44 A? (Do not round your answer.) B) $\frac{11}{14} \Omega/\text{sec}$ C) $\frac{14}{11} \Omega/\text{sec}$ D) $\frac{7}{242} \Omega/\text{sec}$ A) $\frac{56}{11} \Omega/\text{sec}$ 17) The volume of a rectangular box with a square base remains constant at 1000 cm^3 as the area of the 17) _____ base increases at a rate of 3 cm^2 /sec. Find the rate at which the height of the box is decreasing when each side of the base is 11 cm long. (Do not round your answer.) B) $\frac{3}{121}$ cm/sec C) $\frac{3000}{1331}$ cm/sec D) $\frac{3000}{14641}$ cm/sec A) $\frac{1000}{121}$ cm/sec 18) The radius of a right circular cylinder is increasing at the rate of 4 in./sec, while the height is 18) _____ decreasing at the rate of 10 in./sec. At what rate is the volume of the cylinder changing when the radius is 19 in. and the height is 9 in.? B) -2242 π in.³/sec A) -2926 in.³/sec C) 118 in.³/sec D) -2926 π in.³/sec Find the linearization L(x) of f(x) at x = a. 19) $f(x) = 3x^2 + 3x + 4$, a = 119) _____ B) L(x) = 3x + 1 C) L(x) = 9x + 7A) L(x) = 3x + 7D) L(x) = 9x + 120) $f(x) = \frac{1}{6x+2}$, a = 020) A) $L(x) = \frac{3}{2}x + \frac{1}{2}$ B) $L(x) = -\frac{3}{2}x + \frac{1}{4}$ C) $L(x) = \frac{3}{2}x + \frac{1}{4}$ D) $L(x) = -\frac{3}{2}x + \frac{1}{2}$ 21) $f(x) = x + \frac{1}{x}$, a = 421) A) $L(x) = \frac{17}{16}x + \frac{1}{2}$ B) $L(x) = \frac{15}{16}x + \frac{1}{2}$ C) $L(x) = \frac{15}{16}x + \frac{2}{5}$ D) $L(x) = \frac{17}{16}x + \frac{2}{5}$ 22) $f(x) = \tan x, a = \pi$ 22) B) $L(x) = x - \pi$ C) $L(x) = x + \pi$ D) $L(x) = 3x - \pi$ A) $L(x) = x - 3\pi$ You want a linearization that will replace the function over an interval that includes the point x_0 . To make your

subsequent work as simple as possible, you want to center the linearization not at x_0 but at a nearby integer x = a at which the function and its derivative are easy to evaluate. What linearization do you use?

23)
$$f(x) = -3x^2 - 4x + 3$$
, $x_0 = 1.1$
A) -4 B) -6 - 10x C) 7 - 11x D) 6 - 10x 23)

The function f(x) changes value whe	en x changes from x ₀ to x ₀ + dx. Find the approximation error $ \Delta f - df $. Round your
answer, if appropriate.	
2	

	33) $f(x) = x^2, x_0 = 6, dx = 0.06$				33)
	A) 0.0036	B) 0.6636	C) 0.0018	D) 0.0072	,
	11) 0.0000	<i>D</i>) 0.0000	C) 0.0010	D) 0.0072	
	-				
	34) $f(x) = x^3$, $x_0 = 4$, $dx = 0.05$				34)
	A) 0.0451875	B) 0.030125	C) 0.06025	D) 0.0150625	
		_,	_)	_)	
	2				
	35) $f(x) = x - x^2$, $x_0 = 5$, $dx = 0$.03			35)
	A) 0.0549	B) 0.054	C) 0.108	D) 0.0009	
	,	,	,	/	
TA7	· · · · · · · · · · · · · · · · · · ·	in the the streng shows a			
Writ	e a differential formula that est				
	36) The change in the surface a	area S = $4\pi r^2$ of a sphere v	when the radius changes f	$r_0 to r_0 + dx$	36)
	A) $dS = 2\pi r_0 dr$	B) $dS = 4\pi ro^2 dr$	C) dS = $8\pi r_0 dr$	D) $dS = 4\pi r_0 dr$	
	M $dd = 2M0$ dd	D $d = 4 \pi 0$ $d = 4 \pi 0$	C $dS = 0/d0$ dI	D $d = 4 \pi 0$ $d =$	
Solv	e the problem.				
	37) A cube 4 inches on an edg	e is given a protective coa	ting 0.3 inches thick. Abou	t how much coating	37)
	should a production mana	•	0	0	/
	A) About 3360 in. ²		B) About 13,440 in. ³		
	-		-		
	C) About 20,160 in. ³		D) About 10,080 in. ²		
	$28) \wedge \pi^2$ where π is the red	ing in continuators Program		as the area of a simple	20)
	38) A = πr^2 , where r is the rad			es the area of a circle	38)
	decrease when the radius				
	A) 1.9 cm ²	B) 4.0 cm ²	C) 3.6 cm ²	D) 3.8 cm ²	
	39) The diameter of a tree was	11 in During the following	a vaar the circumference	increased 2 in	39)
	57) The diameter of a free was	- 1 1 111. Duting the tonown	ig veal, the chounderence	mereaseu z m.	
	ما بالله من	ę		(-)	<u> </u>
	About how much did the t	ree's diameter increase? (l	Leave your answer in term		
		ree's diameter increase? (l	Leave your answer in term		
		ree's diameter increase? (l			
		ree's diameter increase? (l	Leave your answer in term		
	A) $\frac{\pi}{2}$ in.	tree's diameter increase? (I B) $\frac{11}{\pi}$ in.	Leave your answer in term C) $\frac{13}{\pi}$ in.	D) $\frac{2}{\pi}$ in.	, <u> </u>
	A) $\frac{\pi}{2}$ in. 40) About how accurately must	tree's diameter increase? (I B) $\frac{11}{\pi}$ in.	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank	D) $\frac{2}{\pi}$ in.	40)
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu	tree's diameter increase? (I B) $\frac{11}{\pi}$ in.	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value?	D) $\frac{2}{\pi}$ in.	, <u> </u>
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters	tree's diameter increase? (I B) $\frac{11}{\pi}$ in.	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4%	D) $\frac{2}{\pi}$ in.	, <u> </u>
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu	tree's diameter increase? (I B) $\frac{11}{\pi}$ in.	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value?	D) $\frac{2}{\pi}$ in.	, <u> </u>
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters	tree's diameter increase? (I B) $\frac{11}{\pi}$ in.	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4%	D) $\frac{2}{\pi}$ in.	, <u> </u>
Uset	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters	The second seco	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2%	D) $\frac{2}{\pi}$ in.	, <u> </u>
Uset	 A) π/2 in. 40) About how accurately must measured in order to calcurately Mithin 4 meters C) Within 2 meters Characteristic the differential to approximate 	The second seco	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2%	D) $\frac{2}{\pi}$ in.	40)
Uset	 A) π/2 in. 40) About how accurately must measured in order to calcurately within 4 meters C) Within 4 meters C) Within 2 meters the differential to approximate 41) √145	the quantity to four decir	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places.	D) $\frac{2}{\pi}$ in. that is 14 m high be	, <u> </u>
Uset	 A) π/2 in. 40) About how accurately must measured in order to calcurately Mithin 4 meters C) Within 2 meters Characteristic the differential to approximate 	The second seco	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2%	D) $\frac{2}{\pi}$ in.	40)
Use	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833	the quantity to four decir	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places.	D) $\frac{2}{\pi}$ in. that is 14 m high be	40)
Uset	 A) π/2 in. 40) About how accurately must measured in order to calcurately within 4 meters C) Within 4 meters C) Within 2 meters the differential to approximate 41) √145	the quantity to four decir	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places.	D) $\frac{2}{\pi}$ in. that is 14 m high be	40)
Uset	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833	the quantity to four decir	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places.	D) $\frac{2}{\pi}$ in. that is 14 m high be	40)
Uset	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833 42) e ^{0.38}	tree's diameter increase? (I B) $\frac{11}{\pi}$ in. St the interior diameter of alate the tank's volume with the quantity to four decir B) 12.0417	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places. C) 13.0000	D) $\frac{2}{\pi}$ in. that is 14 m high be D) 11.9583	40)
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833 42) e ^{0.38} A) 1.4623	tree's diameter increase? (I B) $\frac{11}{\pi}$ in. St the interior diameter of alate the tank's volume with the quantity to four decir B) 12.0417 B) 1.3800	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places. C) 13.0000	D) $\frac{2}{\pi}$ in. that is 14 m high be D) 11.9583	40)
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833 42) e ^{0.38} A) 1.4623 4 dy for the given values of x and	The quantity to four decir B) $\frac{11}{\pi}$ in. Solution the interior diameter of the diate the tank's volume with the quantity to four decir B) 12.0417 B) 1.3800 d Δx .	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places. C) 13.0000	D) $\frac{2}{\pi}$ in. that is 14 m high be D) 11.9583	40) 41) 42)
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833 42) e ^{0.38} A) 1.4623 dy for the given values of x and 43) $y = x^3 + 2x; x = 2, \Delta x = 0.$	the quantity to four decir B) $\frac{11}{\pi}$ in. St the interior diameter of a diate the tank's volume with the quantity to four decir B) 12.0417 B) 1.3800 d Δx .	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places. C) 13.0000 C) .6200	D) $\frac{2}{\pi}$ in. that is 14 m high be D) 11.9583 D) 0.6839	40)
	A) $\frac{\pi}{2}$ in. 40) About how accurately must measured in order to calcu- A) Within 4 meters C) Within 2 meters the differential to approximate 41) $\sqrt{145}$ A) 12.0833 42) e ^{0.38} A) 1.4623 4 dy for the given values of x and	The quantity to four decir B) $\frac{11}{\pi}$ in. Solution the interior diameter of the diate the tank's volume with the quantity to four decir B) 12.0417 B) 1.3800 d Δx .	Leave your answer in term C) $\frac{13}{\pi}$ in. a cylindrical storage tank thin 4% of its true value? B) Within 4% D) Within 2% mal places. C) 13.0000	D) $\frac{2}{\pi}$ in. that is 14 m high be D) 11.9583	40) 41) 42)

44) $y = \frac{x^2}{\sqrt{x^2 + 21}}; x = 10, \Delta x = 0.1$				44)
A) <u>146</u> <u>1331</u>	B) <u>148</u> <u>1331</u>	C) <u>144</u> 1331	D) <u>142</u> <u>1331</u>	
45) $y = 2x + 3; x = 18, \Delta x$ A) 1	a = 0.5 B) 0.5	C) 0.1	D) 5	45)

Solve the problem. 46) A tumor i

46) A tumor is approximately spherical in shape. If the radius of the tumor changes from 8 mm to			46)	
10 mm, find the approximate change in volume. Round your answer to the nearest hundred.			nearest hundred.	
A) 2900 mm ³	B) 200 mm ³	C) 2100 mm ³	D) 1600 mm ³	

Answer Key Testname: CHAPTER 2 (PART III) RELATED RATES, DIFFERENTIALS, AND LINEAR APPROXIMATIONS

1)	С		
2)	D		
3)			
4)			
5)	D		
6)	С С		
7)	A		
8)			
9)			
10)			
11)	С		
12)	С		
13)	А		
14)	D		
15)			
16)			
17)			
18)			
19)			
20)			
21)			
22)			
23)			
24)			
25)			
26)			
27)			
28)	В		
29)	С		
30)	В		
31)			
32)			
33)			
34)́			
35)	D		
36)	C		
37)	c		
38)			
39)			
	D		
40)			
41)			
42)			
43)			
44)	D		
45)	А		

46) D